Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

বাস্তব জীবনে গণিতের প্রয়োগ

প্রশ্ন উত্তরCategory: গণিতবাস্তব জীবনে গণিতের প্রয়োগ
Jahan asked 4 years ago

বাস্তব জীবনে গণিতের প্রয়োগ গুলো কি কি হতে পারে ? 


1 Answers
Best Answer
Abu Alam answered 4 years ago

বাস্তব জীবনে গণিতঃ

প্রত্যেক মানুষ অল্পবিস্তর গণিত জানে। জীবনকে নিয়মমাফিক পরিচালনার জন্য ন্যুনতম গণিতের জ্ঞান অপরিহার্য। অল্পশিক্ষিত বা অশিক্ষিত যারা তারাও গুণতে জানে। গণিত ছাড়া কোন মানুষ বেঁচে থাকতে পারে না। শুধু মানুষ নয় পৃথিবীর সকল প্রাণীর মধ্যে ন্যূনতম গণিতের জ্ঞান রয়েছে।


আণুবীক্ষণিক ব্যাকটেরিয়া থেকে শুরু করে গাছপালা, আকাশ-বাতাশ, গ্রহ-নক্ষত্র সবকিছুতে গণিতের ছোঁয়া রয়েছে। গাণিতিক নিয়ম ছাড়া কোন কিছুই চলমান রাখা সম্ভব নয়। এজন্য বলা হয়

“গণিত সকল বিজ্ঞানের জননী”।

গ্রিক ‘ম্যাথেমা’ শব্দ থেকে এসেছে ইংরেজি ‘ম্যাথমেটিক্স’ শব্দটি। গ্রিক ম্যাথেমা এর অর্থ জ্ঞান বা শিক্ষা। জ্ঞানের সমার্থক হবার কারণে গ্রিসে জ্ঞানী বা শিক্ষক প্রত্যেককেই গণিতবিদ বা ম্যাথমেটিসিয়ান বলা হত।

আর সেজন্য প্রাচীন ও মধ্যযুগের সকল পণ্ডিত – তিনি ধর্মবিদ, ইতিহাসবিদ, ভূগোলবিদ, দার্শনিক, চিকিৎসক, রাষ্ট্রবিজ্ঞানী, সমাজতাত্ত্বিক যাই হোন না কেন- প্রায় সকলেই গণিতে দক্ষ হতেন। আসলে গণিত ছাড়া কারোই পেশাগত দক্ষতা অর্জন করা সম্ভব না। গণিতকে বলা হয় প্রকৃতির ব্যাকরণ!!

গণিতের বিভিন্ন শাখা সম্পর্কে কিছু তথ্য দেখলেই বোঝা যাবে গণিত আমাদের জীবনে কতটা অতপ্রত ভাবে জড়িত,

প্রাথমিক গণিতঃ

সব ধরণের প্রাণী পরিমাপ করতে পারে। কম-বেশি, ভারী-হালকা, উঁচু-নীচু, ছোট-বড় ধারণাগুলো প্রত্যেকেই জানে। তাই গণিতবিদেরা বলে থাকেন-
পরিমাপের ধারণাই হচ্ছে গণিতের সবচাইতে প্রাচীনতম ধারণা।

পরিমাণ সম্পর্কে ধারণা আসলে প্রাণীর অস্তিত্ব রক্ষার সাথে সম্পর্কযুক্ত। এই ধারণা না থাকলে সে বেঁচে থাকতেই পারত না। বৃহত্তর পরিসরে পরিমাপের ধারণা মানুষের মধ্যে এসেছে কৃষিজীবী হওয়ার পর থেকে। পরিমাপের ধারণা প্রাচীন সব সভ্যতাতে ছিল। মেসোপটেমীয় বাইজানটাইন সভ্যতা সময়কে ষাট ভাগে ভাগ করার পদ্ধতি আবিষ্কার করেছিল; যা এখনও প্রচলিত আছে। ভারতীয় সভ্যতায় সময়কে পল, অনুপল ইত্যাদি ভাগে বিভক্ত করা হয়েছিল।

তাপ পরিমাপক যন্ত্র আবিষ্কৃত হয় ১৭১৪ সালে। ১৭০৯ সাল থেকে নিরলস গবেষণার পর জার্মান পদার্থবিজ্ঞানী ড্যানিয়েল গাব্রিয়েল ফারেনহাইট (Daniel Gabriel Fahrenheit, 1686–1736) ১৭১৪ সালে পারদ ব্যবহার করে আবিষ্কার করেন থার্মোমিটার। তার নামেই এই স্কেলের নামকরণ করা হয় ফারেনহাইট স্কেল।

একই শতকে সুইডেনের জ্যোতির্বিজ্ঞানী আন্দ্রে সেলসিয়াস (Anders Celsius, 1701–1744) আবিষ্কার করেন সেন্টিগ্রেড বা সেলসিয়াস স্কেল। সেই থেকে তাপমাত্রা গুণবাচক বিষয় থেকে পরিমাণবাচক বিষয়ে পরিণত হয়েছে। তবে এখনও আমরা ভালবাসা, ঘৃণা, ক্রোধ, হিংসা প্রভৃতি পরিমাপ করতে পারি না। গণিতবিদগণ অবশ্য এগুলোকে পরিমাপ করার জন্য প্রচেষ্টা চালিয়ে যাচ্ছেন।

আকার ও নিরাকারের সূত্র

গণিত প্রধানত বিমূর্ত একটি বিষয়, তাকে মূর্ত করে তোলে সংখ্যা। সংখ্যা দিয়েই গণিতকে দৃশ্যমান ব্যবহারযোগ্য করে তোলা হয়। রোমান সংখ্যালিপিতে বিভিন্ন বর্ণ দিয়ে সংখ্যা বোঝানো হত। এই পদ্ধতিতে বড় অংকের গুণভাগ করা যেত না।

তাই প্রাচীনকালে ইউরোপে গণিতের খুব বেশি উন্নতি হয় নি। অথচ সমসাময়িক কালে ভারতবর্ষে কোটি, অর্বুদ, নিযুত, অযুত প্রভৃতি বড় অংকের প্রচলন ছিল। আর এটা সম্ভব ছিল ভারতীয় দশমিক সংখ্যা পদ্ধতির কারণে।

বর্তমানে সারা পৃথিবী দশমিক গণনা পদ্ধতিকে গ্রহণ করেছে। ভারতীয় ঋষিদের আবিষ্কৃত এই পদ্ধতি পারস্যের পণ্ডিতদের হাত ধরে সারা পৃথিবীতে ছড়িয়ে পরে।

পাটীগণিতঃ

পাটীগণিত আমাদের জীবনের প্রায় সকল কাজেই লাগে। ঘুম থেকে উঠে আবার ঘুমাতে যাওয়া পর্যন্ত জীবনের প্রতিটি স্তরে আমরা পাটীগণিত ছাড়া চলতে পারি না। প্রাচীন ব্যাবিলনীয় পণ্ডিতগণ পাটীগণিতের নানা শাখা যেমন অনুপাত, সমানুপাত ইত্যাদি সম্পর্কে জানত।

বলা হয় পাটীগণিতের ধারণা মানুষকে যৌক্তিক চিন্তা করতে শিক্ষা দেয়। যে পাটীগণিত বোঝে তার মধ্যে যৌক্তিক পরিণতি মেনে নেয়ার মানসিকতা থাকে। অনুপাতের ধারণা মানুষের মনে ন্যায়বোধ ও সৌন্দর্যবোধ সৃষ্টি করে। সবচাইতে সুন্দর অনুপাত হল ‘স্বর্ণালি অনুপাত’ বা Golden ratio।

সুন্দর কোন কিছু আঁকতে বা তৈরি করতে চাইলে স্বর্ণালি অনুপাত সম্পর্কে পরিপূর্ণ জ্ঞান থাকতে হবে। স্বর্ণালি অনুপাতের আনুমানিক মান 1.6181
। গাছের উচ্চতার সাথে তার ডালপালার বিস্তৃতি, মানুষের উচ্চতার সাথে তার দুই হাতের বিস্তারের অনুপাত স্বর্ণালি অনুপাতের সাথে সামঞ্জস্যপূর্ণ।

বিখ্যাত চিত্রশিল্প, নান্দনিক স্থাপত্য সবকিছুই স্বর্ণালি অনুপাতের কথা মাথায় রেখে তৈরি করা। পাটীগণিতের এই অসামান্য ভূমিকার জন্যই একে গণিতের রাণী বলা হয়।

সংখ্যাতত্ত্বঃ

বন্ধ দুয়ার খোলা” অধ্যায়ের প্রধান আলোচ্য বিষয় ক্রিপ্টোলজি। তথ্য গোপন ও নিরাপদ রাখতে হাজার বৎসর আগে থেকেই ক্রিপ্টোলজি ব্যবহৃত হত। নবম শতাব্দীর দার্শনিক আল কিন্দি নিরাপত্তার প্রয়োজনে ক্রিপ্টোলজির উন্নয়ন ঘটান। এই ক্রিপ্টোলজির উপর ভিত্তি করে আধুনিক যুগের পাসওয়ার্ড নিরাপদ রাখা হচ্ছে।

বিন্যাস ও সমাবেশঃ

সংখ্যাতত্ত্বের ভিন্নরূপ” অধ্যায়ে কিছু সংখ্যাকে বিভিন্ন ভাগে ভাগ করার যে ধারণা তা নিয়ে আলোচনা রয়েছে। যে কোন কিছুর প্যাটার্ণ বিশ্লেষণ, বিন্যাস ও সমাবেশ করার জন্য গণিতের যে শাখা তাকে কম্বিনেটরিক্স বলে। কয়েকটি উদাহরণ দিয়ে লেখক আমাদেরকে বিষয়টি সুন্দর করে বুঝিয়ে দিয়েছেন।

সংখ্যা দিয়ে সঠিকভাবে বিন্যাসের জ্ঞান মানুষের আছে বলেই বিশ্বকাপ ফুটবলে ৩২টি দলকে দিয়ে ৬৪টি ম্যাচ খেলিয়ে বিজয়ী বের করা যায়। পাটীগণিত না জানলে এই ৩২টি দলের মধ্যে একটি দলকে বিজয়ী ঘোষণা করতে আয়োজকদেরকে ৫৩২টি খেলার আয়োজন করতে হত। জীববিজ্ঞান, অনুজীববিজ্ঞান, বংশগতিবিজ্ঞান এর জেনোটাইপ-ফেনোটাইপ নির্ধারণে সংখ্যার বিন্যাস জ্ঞান না থাকলে চলত না।

ম্যাট্রিক্সঃ

অনেকগুলো সংখ্যা বা তথ্য বা উপাত্তকে সঠিকভাবে সাজানোর ধারণা না থাকলে প্রয়োজনীয় কাজের অসুবিধা হতে পারে। লক্ষ্যমাত্রা অর্জনে বিঘ্ন ঘটতে পারে। এই সমস্যা গণিতের যে শাখার মাধ্যমে সমাধান হয়, তার নাম ম্যাট্রিক্স। তাই ম্যাট্রিক্সকে বলা হয় বিন্যাসের গণিত।

বীজগণিতঃ

বীজগণিতঃ প্রাচীন মিশর, ভারত, গ্রীক সভ্যতাতে বীজগণিতের বিভিন্ন সমস্যা নিয়ে চিন্তা করার ইতিহাস পাওয়া যায়। পরে আলেকজান্দ্রিয়ার গণিতবিদ ডায়াফোন্টাস (Diophantus) বীজগণিতের নীতিসমূহ উদ্ভাবন করেন। তাঁকে “বীজগণিতের জনক” বলা হয়। এক বা একাধিক অজানা রাশি মনে মনে ধরে নেয়ার যে ধারণা তিনি প্রস্তাব করেছিলেন আজ তা সারাবিশ্বে সাদরে গৃহীত হয়েছে। প্রাচীন ভারতীয় গণিতবিদগণও অজানা রাশিকে বর্ণের মাধ্যমে প্রকাশ করার রীতি চালু করেছিলেন। তবে বীজগণিতকে জনপ্রিয় করার প্রধান কৃতিত্ব পারস্যের গণিতবিদ আল-খাওয়ারিজমি’র।

পাটীগণিতে যেকোন গাণিতিক সমস্যাকে সংখ্যা ও সংখ্যার মধ্যকার বিভিন্ন প্রক্রিয়ার মাধ্যমে সম্পন্ন করা হয়। কিন্তু বীজগণিতে কোনো গাণিতিক সমস্যাকে প্রথমে অজানা রাশি বা প্রতীকের মাধ্যমে সমীকরণ আকারে প্রকাশ করা হয়। সংখ্যা এবং বিভিন্ন সাংখ্যিক প্রক্রিয়ার মাধ্যমে প্রকাশ করায় পাটীগণিতে প্রতিটি সমস্যাকে আলাদাভাবে বিবেচনায় নিয়ে সমাধান করা হয়। অন্যদিকে বীজগণিতে একই জাতীয় সকল সমস্যার একটি সাধারণ সমাধান উপস্থাপন করা হয়। তাই বলা চলে ভিন্ন জিনিসকে একই নামে জানার কৌশলই বীজগণিত।

বাস্তব জীবনে জ্যামিতিঃ

(Geometry) শব্দটি এসেছে ‘জিও’ ও ‘মেট্রিয়া’ থেকে। জিও – এর অর্থ পৃথিবী বা ভূমি আর মেট্রিয়া অর্থ পরিমাপ। জ্যামিতি আমাদের মনে স্থান সম্পর্কে পরিষ্কার ধারণা তৈরি করে। জ্যামিতির মাধ্যমে কোন একটি স্থানের অবস্থান, আকার সম্পর্কে সুস্পষ্টভাবে একমাত্রিক, দ্বিমাত্রিক বা ত্রিমাত্রিক ধারণা পাওয়া সম্ভব। জ্যামিতি ভাল বোঝার কারণেই মিশরীয়, ভারতীয়, গ্রীকরা সুউচ্চ নান্দনিক দালান বা স্থাপত্যকলা তৈরি করতে পেরেছে।

প্লেটো জ্যামিতিকে উন্নততর বুদ্ধিবৃত্তিক কাজ বলে মনে করতেন। তাই তার প্রতিষ্ঠিত একাডেমির দরজায় লিখে রেখেছিলেন-
জ্যামিতিতে যার জ্ঞান নেই, এখানে তার প্রবেশ নিষেধ

বাইনারী সংখ্যা পদ্ধতিঃ

কম্পিউটার একটি জটিল ডিজিটাল বর্তনীর সমন্বয়। এই সকল বর্তনীসমূহ প্রোগ্রামের নির্দেশে বিভিন্ন গাণিতিক ও যৌক্তিক কার্য সম্পন্ন করে। কিন্তু এই সকল বর্তনীগুলিতে বাইনারি সংখ্যা পদ্ধতি ব্যবহার হয়, কম্পিউটার মানুষের ব্যবহার্য দশমিক সংখ্যা বোঝেনা তাই মানুষের বোধ্যগম্য সংখ্যাকে কম্পিউটারের নিকট গ্রহণযোগ্য করে তোলার জন্য দশমিক সংখ্যাকে বাইনারি সংখ্যায় রূপান্তরের প্রয়োজন হয়।

আবার কম্পিউটারের বর্তনীতে মুহৃর্তের মধ্যে বহু সংখ্যক গাণিতিক ও যৌক্তিক কাজের শেষ ফলাফল তৈরী হয় বাইনারি সংখ্যায় এবং এই ফলাফল মানুষের সামনে হুবহু তুলে ধরলে মানুষের নিকট তা সহজে বোধগম্য হবেনা কারন মানুষ বাইনারি পদ্ধতিতে অভ্যস্থ নয়, তাই এখানে প্রয়োজন ফলাফলটিকে মানুষের সামনে উপস্থাপনের পূর্বে তা মানুষের বোধগম্য পদ্ধতি ডেসিম্যাল সংখ্যায় রূপান্তর করে উপস্থাপন করা। এছাড়া ডিজিটাল ইলেকট্রনিক্সের নকশা প্রণয়ন, বর্তনী গঠন ও নানাবিধ প্রয়োজনে সংখ্যা পদ্ধতির প্রয়োজনীয়তা অপরিসীম।

এছাড়াও আদিকাল থেকে তথ্যপ্রযুক্তির এই যুগে বিজ্ঞানের প্রায় প্রতিটি শাখায় ও আমাদের দৈনন্দিন জীবনে গণিত ওতপ্রোতভাবে জড়িত।

Your Answer

2 + 9 =